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Background

▪ Tip-driven rotors are a long-standing 
alternative to shaft-driven rotors 
❑Eliminate transmission + anti-torque 

system 

❑Can shorten tail boom 

❑Decouples directional and heave dynamics

❑Reduction in rotating parts, weight, 
maintainance costs, (power req.)

▪ Approaches to tip-driven rotors
❑Cold tip jets (FIAT 7002, 1961)

❑Hot tip jets (Fairey Rotodyne, 1957)

❑Ramjets (Hiller YH-32 Hornet, 1950)

❑Pulsejets (XH-26 Jet Jeep)

FIAT 7002

Fairey Rotodyne
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Motivation

▪ Significant drawbacks as well
❑Pressure losses and sealing challenges for 

transporting compressed air or exhaust gasses 
to the blade tips

❑High centrifugal loads acting on the jet 
engines

❑High noise levels produced by the tip-jet

▪ New opportunities given by distributed
electric engines
❑Main rotor driven by rotor-mounted propellers 

rather than tip jets
❑Eliminates difficulties with transporting 

compressed air or exhaust gasses
❑May relax disadvantages related to high noise 

levels
❑Increased main rotor inertia
❑Redundancy

F-Helix eVTOL Concept Aircraft
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Motivation

▪ Main rotor torque provided by two pairs of 
counter-rotating coaxial propellers 
(eProps) 

▪ eProps powered by two electric engines 
each

▪ eProps mounted on a beam rigidly
connected to the rotor hub

▪ eProps at a radial location of roughly half 
of the rotor radius [Saetti et al. 2019]

▪ Lift entirely generated by two-bladed rotor

▪ Fuselage based on Silvercraft SH-4

▪ Small ducted fans replace the tail rotor 
(Yaw Fans)

F-Helix eVTOL Concept Aircraft

eProp

Yaw Fans
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Objectives

▪ Previous investigations
❑Design optimization 
❑Performance analysis 

▪ Current investigation

1. Assess dynamic stability
❑Hover 
❑Forward flight 

2. Develop Flight Control Design Methods 
❑Automatic Flight Control System 

(AFCS)
❑RPM Governor

3. Verify the potential safety benefits of 
concept aircraft
❑Simulation of autorotation following 

total loss of power

Legacy F-Helix eVTOL Concept Aircraft
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Simulation Model

▪ Fuselage and empennage
❑Lookup tables for fuselage aero coeffs. 
❑Simple finite wing models for empennage
❑Simplified rotor to airframe interference model

▪ Main rotor
❑Quasi-steady tip path plane model
❑3-state Pitt-Peters inflow model
❑Articulated rotor mode

▪ eProps
❑1-state dynamic inflow model (per propeller)
❑Thrust coeff. calculated with BEPM
❑Aft propeller assumed fully in front propeller’s 

wake

▪ Yaw fans
❑Blade element static model
❑Adjusted for ducted fans

F-Helix eVTOL Concept Aircraft
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Simulation Model

▪ Equations of motion
❑Nonlinear system in first-order form
❑18 states
❑5 control inputs 

▪ States
❑Body velocities (𝑢, 𝑣, 𝑤)
❑Angular rates (𝑝, 𝑞, 𝑟)
❑Euler angles (𝜙, 𝜃, 𝜓)
❑MR inflow (𝜆0, 𝜆1𝑐 , 𝜆1𝑠)
❑MR angular speed and azimuth ΩMR, 𝜓MR

❑Induced velocities of 𝑖𝑡ℎ eProp 𝜆𝑢, 𝜆𝑙 eProp𝑖

▪ Control Inputs 
❑Longitudinal and lateral sticks (𝐴1𝑐 , 𝐵1𝑐)
❑Pedals (𝜃TR)
❑Collective stick (𝜃0)

❑eProps angular speed (ΩeProp)

F-Helix eVTOL Concept Aircraft
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Simulation Model

▪ Trim aircraft model at incremental speeds
❑From hover to 80 kts (max. speed)

❑Used Neton-Rhapson algorithm

❑Maximum Take-Off Weight (1900 lbs)

▪ While rotorcraft trimmed w/ zero bank 
angle (𝜙), resulting sideslip angle (𝛽) very 
small

▪ Because no torque exchanged between 
main rotor and fuselage, can trim  
simultaneously w/ zero bank and sideslip 
angle

▪ Different tendency w.r.t. standard
helicopter configurations

Trim attitude vs. true airspeed 
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Dynamic Stability

Eigenvalues

eProp
Inflow Rigid-Body 

Dynamics

Main Rotor 
Inflow

▪ Rotorcraft dynamics linearized 
❑Hover and 80 kts
❑Maximum Take-Off Weight (1900 lbs)

▪ eProp inflow dynamics stable and faster than rigid-
body and main rotor dynamics

▪ Two unstable modes at hover
❑Phugoid
❑Roll-pitch oscillation
❑Typical of helicopters in hover

▪ Stable main rotor angular speed dynamics
❑Freq. doubled from hover to 80 kts
❑“More” stable than standard rotor due to eProp

inflow

▪ Dutch roll mode unstable at 80 kts 
❑Does not achieve Level 3 lateral-directional 

oscillatory HQ (ADS-33)
❑Lack of yaw damping from missing tail rotor
❑Provide yaw damping via feedback control or 

increased size of vertical tail 
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Dynamic Stability

Rigid-body eigenvalues

Phugoid
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MR Angular 
Speed
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Dynamic Stability

Mode Eigenvalue

Roll-Pitch Oscillations −1.3387 ± 0.2397𝑖

Roll-Pitch Oscillations 0.2697 ± 0.5620𝑖

Phugoid 0.0276 ± 1.0171𝑖

Heave Subsidence −0.1053

Yaw Subsidence −0.0045

Main Rotor Angular Speed −0.1416

Main Rotor Collective Inflow −1.8445

Main Rotor Cyclic Inflow (2x) −10.4566

eProp Inflow −101.6494

eProp Inflow −101.1208

eProp Inflow −101.1476

eProp Inflow −101.6137

Eigenvalues at Hover Eigenvalues at 80 kts

Mode Eigenvalue

Short Period −1.3377 ± 1.1845𝑖

Phugoid −0.0386 ± 0.2476𝑖

Dutch Roll 0.4672 ± 0.2049𝑖

Coupled Subsidence/Spiral Mode −2.1776

Coupled Subsidence/Spiral Mode −1.7793

Main Rotor Angular Speed −0.2209

Main Rotor Collective Inflow −16.4377

Main Rotor Cyclic Inflow (2x) −24.935 ± 7.7208𝑖

eProp Inflow −94.7127

eProp Inflow −94.2907

eProp Inflow −94.6667

eProp Inflow −94.3279
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Flight Control Design

▪ Non-Linear Dynamic Inversion (NLDI)
❑Model-following scheme 
❑ Extensively studied in rotorcraft community

❑ Popular among aircraft/rotorcraft manufacturers

▪ NLDI key components
❑ Command model to specify desired response to pilot 

cmds

❑ Feedback compensation on tracking error
❑ Feedback linearization loop to achieve model inversion

▪ Automatic Flight Control System (AFCS)
❑ Based on NLDI 

❑ Provides stability, disturbance rejection, and RCAH 
response about roll, pitch, and yaw axes

❑ RCAH response could potentially be implemented as 
partial-authority flight control system 

❑Vertical speed command in heave axis

❑NLDI-based governor to hold MR angular speed 
constant 

DI controller applied to linear system
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Flight Control Design

▪ Reduced-order models 
❑NLDI requires full-state FB
❑Low-order models make design more tractable

▪ Residualization (singular perturbation 
theory) 
❑Slow states: rigid-body states + angular speed 

dynamics (8 states)
❑Fast states: main rotor + eProps inflow
❑Low-order eigs overlap full-order eigs 

▪ NLDI design
❑Based on reduced-order models

❑Control law: 𝒖 = 𝑪෡𝑩
−1

𝝂 − 𝑪෡𝑨𝒙𝑠
❑෡𝑨, ෡𝑩, and 𝑪 matrices scheduled with speed
❑Feedback gains chosen so that error dynamics 

is of same order of command models Reduced-order vs full-order eigenvalues at hover 
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Flight Control Design

Command 
Model

Feedback 
Compensation

Feed-forward
Compensation 

FB Linearization 
Loop

Inversion
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Flight Control Law Validation

▪ NLDI control law implemented on nonlinear 
aircraft dynamics

▪ Test case 65 kts level flight (speed for max 
range)

▪ Response to 20% long. stick doublet
❑Closed-loop systems tracks commanded pitch 

rate
❑Off-axis response very well-contained
❑MR angular speed held approx. constat by 

governor 

▪ eProp inflow ratio
❑Amplitude of oscillation of upper (front) rotor 

greater than lower (aft) rotor
❑Front rotor of each eProp acts as filter to

inflow of aft rotor 

▪ NLDI control law successful in stabilizing 
aircraft while providing desired response  
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Autorotation Performance

▪ High main rotor inertia
❑Rotor inertia increased by ≈ 162%

▪ Potential safety benefits
❑Decreased RPM decay rate

❑Increased pilot reaction time

❑No need to disengage clutch (no clutch)

▪ Autorotation Index (AI)
❑Measure of autorotation performance

❑Ratio of total kinetic energy to rotorcraft 
weight

❑AI index higher than legacy and fielded 
rotorcraft

Autorotation index (recreated from Leishman)
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Autorotation Performance

▪ Simulation performed following loss of power
❑Analyze autorotation performance
❑Verify potential safety benefits

▪ Following power loss, NLDI controller switches to 
autorotation mode
❑Added ACAH and airspeed hold 

❑Vertical axis NLDI controller disabled

❑ Collective moved to fixed position (≈ 4 deg)
❑Governor disabled 

❑Airspeed controller commands 41 kts fwd speed 
(corresponds to min. descent rate of ≈ 4.5 m/s)

▪ Autorotation simulations 
❑ Power failure simulated by ramping down eProp RPM 

to zero over 1 sec 

❑ 2 sec pilot response time
❑ Start at 500 m altitude 

❑ 50 sec duration 

❑ Initial speeds ranging 10-70 kts  

Flight trajectories for autorotation simulation
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Autorotation Performance

▪ No successful autorotations below 10 kts 
❑Numerical instability when near vortex ring state
❑Possible issue with Pitt-Peters implementation
❑Not a limitation of configuration

▪ In all cases (10-70 kts) rotorcraft reaches 
steady-state autorotative descent 
❑41 kts fwd speed, 4.5 m/s descent rate
❑Higher initial speeds (50-70 kts) → deceleration so 

that initial desscent rate < 4.5 m/s
❑Slower initial speeds (10-40 kts) → acceleration so 

that initial desscent rate > 4.5 m/s

▪ Because of delay in power failure detection
❑Vertical axis controller initially tries to increase

collective to maintain altitute
❑Delays descent but increases main rotor speed 

droop (11.5% due to high rotor inertia)
❑2 sec pilot response time conservative
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Autorotation Performance

▪ Height-Velocity envelope
❑First steps towards prediction of H-V diagram 

for safe autorotation 

❑Can only predict entry phase where rotorcraft 
reaches steady-state 

❑In emergency autorotations at low altitude 
helicopter may not reach steady descent rate

❑Need for more complex dynamic maneuver

▪ Overall, rotorcraft reaches steady descent 
with small transient droop in rotor RPM

▪ High-inertia rotor would also benefits 
❑Final flare maneuver

❑Collective breaking maneuver to land 
rotorcraft
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Conclusion

1. Aircraft trimmed with zero sideslip and roll angle simultaneously
❑No torque exchanged between main rotor and fuselage
❑Not possible for standard helicopter configs. 

2. Dutch roll mode is unstable at high speeds
❑Lack of yaw damping from tail rotor
❑Can add yaw damping with feedback control or increased vertical tail size

3. Main rotor angular speed mode stable at hover and high-speed flight 

4. Dynamics of the heave and yaw axes are decoupled
❑No torque exchanged between the main rotor and fuselage
❑Favorable response characteristic when comparing to standard helicopter configs.

5. Front rotor of each eProp acts as a filter for the lower rotor inflow 

6. Small transient droop in rotor RPM following total loss of power
❑High-inertia rotor
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The End

Thank you

Questions?


