

Flight Dynamics and Control of an eVTOL Concept Aircraft with a Propeller-Driven Rotor

VFS Forum 76 10/8/2020

Umberto Saetti

Jacob Enciu

Joseph F. Horn

Post-Doctoral Fellow School of Aerospace Engineering Georgia Institute of Technology

Research Assistant Professor Professor Department of Aerospace Engineering

Pennsylvania State University

Introduction

BackgroundMotivationObjectives

Methodology

Simulation ModelDynamic StabilityFlight Control Design

Results

Flight Control Law ValidationAutorotation Performance

Conclusions

Background

- Tip-driven rotors are a long-standing alternative to shaft-driven rotors
 - Eliminate transmission + anti-torque system
 - Can shorten tail boom
 - Decouples directional and heave dynamics
 Reduction in rotating parts, weight, maintainance costs, (power req.)
- Approaches to tip-driven rotors
 Cold tip jets (FIAT 7002, 1961)
 Hot tip jets (Fairey Rotodyne, 1957)
 Ramjets (Hiller YH-32 Hornet, 1950)
 Pulsejets (XH-26 Jet Jeep)

FIAT 7002

Fairey Rotodyne

Background

- Tip-driven rotors are a long-standing alternative to shaft-driven rotors
 - Eliminate transmission + anti-torque system
 - Can shorten tail boom
 - Decouples directional and heave dynamics
 Reduction in rotating parts, weight, maintainance costs, (power req.)
- Approaches to tip-driven rotors
 Cold tip jets (FIAT 7002, 1961)
 Hot tip jets (Fairey Rotodyne, 1957)
 Ramjets (Hiller YH-32 Hornet, 1950)
 Pulsejets (XH-26 Jet Jeep)

Hiller YH-32 Hornet

XH-26 Jet Jeep

Motivation

- Pressure losses and sealing challenges for transporting compressed air or exhaust gasses to the blade tips
- □ High centrifugal loads acting on the jet engines

□ **High noise levels** produced by the tip-jet

- New opportunities given by distributed electric engines
 - Main rotor driven by rotor-mounted propellers rather than tip jets
 - Eliminates difficulties with transporting compressed air or exhaust gasses
 - May relax disadvantages related to high noise levels
 - Increased main rotor inertia
 - Redundancy

Geo

F-Helix eVTOL Concept Aircraft

Motivation

F-Helix eVTOL Concept Aircraft

- Main rotor torque provided by two pairs of counter-rotating coaxial propellers (eProps)
- eProps powered by two electric engines each
- eProps mounted on a beam rigidly connected to the rotor hub
- eProps at a radial location of roughly half of the rotor radius [Saetti et al. 2019]
- Lift entirely generated by two-bladed rotor
- Fuselage based on Silvercraft SH-4
- Small ducted fans replace the tail rotor (Yaw Fans)

- Previous investigations
 Design optimization
 Performance analysis
- Current investigation
- **Assess dynamic stability** Hover
 Forward flight
- Develop Flight Control Design Methods
 Automatic Flight Control System (AFCS)
 RPM Governor
- 3. Verify the potential safety benefits of concept aircraft

□Simulation of autorotation following total loss of power

Legacy F-Helix eVTOL Concept Aircraft

Introduction

BackgroundMotivationObjectives

Methodology

Simulation ModelDynamic StabilityFlight Control Design

Results

Flight Control Law ValidationAutorotation Performance

Conclusions

Simulation Model

Lookup tables for fuselage aero coeffs.

□ Simple finite wing models for empennage

□ Simplified rotor to airframe interference model

Main rotor

Quasi-steady tip path plane model

□ 3-state Pitt-Peters inflow model

Articulated rotor mode

eProps

□ 1-state dynamic inflow model (per propeller)

□ Thrust coeff. calculated with BEPM

Aft propeller assumed fully in front propeller's wake

Yaw fans

Blade element static modelAdjusted for ducted fans

Geor

F-Helix eVTOL Concept Aircraft

Simulation Model

□ Nonlinear system in first-order form

□ 18 states

□ 5 control inputs

States

 \Box Body velocities (*u*, *v*, *w*)

 \Box Angular rates (p, q, r)

 \Box Euler angles (ϕ , θ , ψ)

 \Box MR inflow (λ_0 , λ_{1c} , λ_{1s})

 \Box MR angular speed and azimuth (Ω_{MR} , ψ_{MR})

 \Box Induced velocities of i^{th} eProp $(\lambda_u, \lambda_l)_{eProp_i}$

Control Inputs

 \Box Longitudinal and lateral sticks (A_{1c}, B_{1c})

 \Box Pedals ($\theta_{\rm TR}$)

Collective stick (θ_0)

 \Box eProps angular speed (Ω_{eProp})

Georgia

Tec

F-Helix eVTOL Concept Aircraft

Simulation Model

- Trim aircraft model at incremental speeds
 From hover to 80 kts (max. speed)
 Used Neton-Rhapson algorithm
 Maximum Take-Off Weight (1900 lbs)
- While rotorcraft trimmed w/ zero bank angle (φ), resulting sideslip angle (β) very small
- Because no torque exchanged between main rotor and fuselage, can trim simultaneously w/ zero bank and sideslip angle
- Different tendency w.r.t. standard helicopter configurations

Trim attitude vs. true airspeed

- Rotorcraft dynamics linearized
 Hover and 80 kts
 Maximum Take-Off Weight (1900 lbs)
- eProp inflow dynamics stable and faster than rigidbody and main rotor dynamics
- Two unstable modes at hover
 - Dehugoid

PennState

- Roll-pitch oscillation
- Typical of helicopters in hover
- Stable main rotor angular speed dynamics
 Freq. doubled from hover to 80 kts
 "More" stable than standard rotor due to eProp inflow
- Dutch roll mode unstable at 80 kts
 - Does not achieve Level 3 lateral-directional oscillatory HQ (ADS-33)
 - Lack of yaw damping from missing tail rotor
 - Provide yaw damping via feedback control or increased size of vertical tail

- Rotorcraft dynamics linearized
 Hover and 80 kts
 Maximum Take-Off Weight (1900 lbs)
- eProp inflow dynamics stable and faster than rigidbody and main rotor dynamics
- Two unstable modes at hover
 - Phugoid

PennState

- □ Roll-pitch oscillation
- Typical of helicopters in hover
- Stable main rotor angular speed dynamics
 Freq. doubled from hover to 80 kts
 "More" stable than standard rotor due to eProp inflow
- Dutch roll mode unstable at 80 kts
 - Does not achieve Level 3 lateral-directional oscillatory HQ (ADS-33)
 - $\hfill\square$ Lack of yaw damping from missing tail rotor
 - Provide yaw damping via feedback control or increased size of vertical tail

Dynamic Stability

Eigenvalues at Hover

Mode	Eigenvalue
Roll-Pitch Oscillations	$-1.3387 \pm 0.2397i$
Roll-Pitch Oscillations	$0.2697 \pm 0.5620i$
Phugoid	$0.0276 \pm 1.0171i$
Heave Subsidence	-0.1053
Yaw Subsidence	-0.0045
Main Rotor Angular Speed	-0.1416
Main Rotor Collective Inflow	-1.8445
Main Rotor Cyclic Inflow (2x)	-10.4566
eProp Inflow	-101.6494
eProp Inflow	-101.1208
eProp Inflow	-101.1476
eProp Inflow	-101.6137

Eigenvalues at 80 kts

Mode	Eigenvalue
Short Period	$-1.3377 \pm 1.1845i$
Phugoid	$-0.0386 \pm 0.2476i$
Dutch Roll	$0.4672 \pm 0.2049i$
Coupled Subsidence/Spiral Mode	-2.1776
Coupled Subsidence/Spiral Mode	-1.7793
Main Rotor Angular Speed	-0.2209
Main Rotor Collective Inflow	-16.4377
Main Rotor Cyclic Inflow (2x)	-24.935 ± 7.7208 <i>i</i>
eProp Inflow	-94.7127
eProp Inflow	-94.2907
eProp Inflow	-94.6667
eProp Inflow	-94.3279

Flight Control Design

- Non-Linear Dynamic Inversion (NLDI)
 - □ Model-following scheme
 - Extensively studied in rotorcraft community
 - Popular among aircraft/rotorcraft manufacturers
- NLDI key components
 - Command model to specify desired response to pilot cmds
 - □ Feedback compensation on tracking error
 - □ Feedback linearization loop to achieve model inversion
- Automatic Flight Control System (AFCS)

Based on NLDI

- Provides stability, disturbance rejection, and RCAH response about roll, pitch, and yaw axes
- RCAH response could potentially be implemented as partial-authority flight control system
- Uvertical speed command in heave axis
- NLDI-based governor to hold MR angular speed constant

Geo

DI controller applied to linear system

Reduced-order models
 NLDI requires full-state FB

Low-order models make design more tractable

Residualization (singular perturbation theory)

Slow states: rigid-body states + angular speed dynamics (8 states)

□ Fast states: main rotor + eProps inflow □ Low-order eigs overlap full-order eigs

NLDI design

PennState

Based on reduced-order models

Control law: $\boldsymbol{u} = (C\widehat{\boldsymbol{B}})^{-1}(\boldsymbol{v} - C\widehat{\boldsymbol{A}}\boldsymbol{x}_s)$

 $\Box \widehat{A}, \widehat{B}$, and C matrices scheduled with speed

Feedback gains chosen so that error dynamics is of same order of command models

Reduced-order vs full-order eigenvalues at hover

Flight Control Design Compensation

PennState

Feedback

Georgia

Tech

Introduction

BackgroundMotivationObjectives

Methodology

Simulation ModelDynamic StabilityFlight Control Design

Results

Flight Control Law ValidationAutorotation Performance

Conclusions

- NLDI control law implemented on nonlinear aircraft dynamics
- Test case 65 kts level flight (speed for max range)
- Response to 20% long. stick doublet
 Closed-loop systems tracks commanded pitch rate
 - □Off-axis response very well-contained
 - MR angular speed held approx. constat by governor
- eProp inflow ratio
 - Amplitude of oscillation of upper (front) rotor greater than lower (aft) rotor
 - □ Front rotor of each eProp acts as filter to inflow of aft rotor
- NLDI control law successful in stabilizing aircraft while providing desired response

Georg

- Test case 65 kts level flight (speed for max range)
- Response to 20% long. stick doublet
 - Closed-loop systems tracks commanded pitch rate
 - Off-axis response very well-contained
 - MR angular speed held approx. constat by governor
- eProp inflow ratio
 - Amplitude of oscillation of upper (front) rotor greater than lower (aft) rotor
 - □ Front rotor of each eProp acts as filter to inflow of aft rotor
- NLDI control law successful in stabilizing aircraft while providing desired response

Geor

- High main rotor inertia
 □ Rotor inertia increased by ≈ 162%
- Potential safety benefits
 Decreased RPM decay rate
 Increased pilot reaction time
 No need to disengage clutch (no clutch)
- Autorotation Index (AI)
 - Measure of autorotation performance
 Ratio of total kinetic energy to rotorcraft weight
 - Al index higher than legacy and fielded rotorcraft

Geor

Autorotation index (recreated from Leishman)

- Simulation performed following loss of power
 Analyze autorotation performance
 Verify potential safety benefits
- Following power loss, NLDI controller switches to autorotation mode
 - Added ACAH and airspeed hold
 - □ Vertical axis NLDI controller disabled
 - \Box Collective moved to fixed position (\approx 4 deg)
 - Governor disabled
 - □ Airspeed controller commands 41 kts fwd speed (corresponds to min. descent rate of \approx 4.5 m/s)
- Autorotation simulations
 - Power failure simulated by ramping down eProp RPM to zero over 1 sec
 - 2 sec pilot response time
 - □ Start at 500 m altitude
 - □ 50 sec duration
 - □ Initial speeds ranging 10-70 kts

Geo

Flight trajectories for autorotation simulation

- No successful autorotations below 10 kts
 Numerical instability when near vortex ring state
 Possible issue with Pitt-Peters implementation
 Not a limitation of configuration
- In all cases (10-70 kts) rotorcraft reaches steady-state autorotative descent
 - 41 kts fwd speed, 4.5 m/s descent rate
 - □ Higher initial speeds (50-70 kts) → deceleration so that initial desscent rate < 4.5 m/s
 - □ Slower initial speeds (10-40 kts) → acceleration so that initial desscent rate > 4.5 m/s
- Because of delay in power failure detection
 - Vertical axis controller initially tries to increase collective to maintain altitute
 - Delays descent but increases main rotor speed droop (11.5% due to high rotor inertia)
 - □ 2 sec pilot response time conservative

Geor

- No successful autorotations below 10 kts
 Numerical instability when near vortex ring state
 Possible issue with Pitt-Peters implementation
 Not a limitation of configuration
- In all cases (10-70 kts) rotorcraft reaches steady-state autorotative descent
 - 41 kts fwd speed, 4.5 m/s descent rate
 - □ Higher initial speeds (50-70 kts) → deceleration so that initial desscent rate < 4.5 m/s</p>
 - □ Slower initial speeds (10-40 kts) → acceleration so that initial desscent rate > 4.5 m/s

Because of delay in power failure detection

- Vertical axis controller initially tries to increase collective to maintain altitute
- Delays descent but increases main rotor speed droop (11.5% due to high rotor inertia)
- □ 2 sec pilot response time conservative

Geor

Height-Velocity envelope

PennState

- □ First steps towards prediction of H-V diagram for safe autorotation
- Can only predict **entry phase** where rotorcraft reaches steady-state

 In emergency autorotations at low altitude helicopter may not reach steady descent rate
 Need for more complex dynamic maneuver

- Overall, rotorcraft reaches steady descent with small transient droop in rotor RPM
- High-inertia rotor would also benefits
 Final flare maneuver
 Collective breaking maneuver to land

Collective breaking maneuver to land rotorcraft

Introduction

BackgroundMotivationObjectives

Methodology

Simulation ModelDynamic StabilityFlight Control Design

Results

Flight Control Law ValidationAutorotation Performance

Conclusions

- Aircraft trimmed with zero sideslip and roll angle simultaneously
 No torque exchanged between main rotor and fuselage
 Not possible for standard helicopter configs.
- Dutch roll mode is unstable at high speeds
 Lack of yaw damping from tail rotor
 Can add yaw damping with feedback control or increased vertical tail size
- 3. Main rotor angular speed mode stable at hover and high-speed flight
- **4.** Dynamics of the heave and yaw axes are decoupled
 No torque exchanged between the main rotor and fuselage
 Favorable response characteristic when comparing to standard helicopter configs.
- 5. Front rotor of each eProp acts as a filter for the lower rotor inflow
- 6. Small transient droop in rotor RPM following total loss of power
 □ High-inertia rotor

This research was partially funded by **Vinati Srl** under a sponsored research contract. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the policies, either expressed or implied, of Vinati Srl.

Thank you

Questions?